Urs C. Schmidt-Ott

Research Summary
The Schmidt-Ott lab uses experimental and genomic approaches to study the molecular basis of evolutionary novelties and causes of developmental systems drift in embryos, using a broad range old and new fly models, including midges and mosquitoes (Diptera). We are interested in mechanisms pattern formation and morphogenesis. We welcome students and scholars who are interested in using our zoo of fly species to understand how plasticity and robustness shape gene networks and developmental mechanisms.
Keywords
Development and Evolution, Embryogenesis, Genomics, Pattern Formation, Axis Specification, Gene Network, Drosophila, Mosquito
Education
  • Max-Planck-Institute f. Biophys. Chemistry, Göttingen (Germany), Postdoc Molecular Developmental Biology 1997
  • University of Mainz, Mainz (Germany), PhD Genetics 1994
  • University of Freiburg, Freiburg i. Br. (Germany), Diplom Biology 1990
Awards & Honors
  • 1989 - Fellow Studienstiftung des Deutschen Volkes
  • 1994 - PhD summa cum laude University of Mainz
  • 1995 - 1997 Postdoctoral Fellowship German Research Foundation (DFG)
  • 1995 - Dissertation Research Award Association of Friends of the University of Mainz
  • 2001 - Habilitation Technical University of Braunschweig (Germany)
Publications
  1. Twenty-seven ZAD-ZNF genes of Drosophila melanogaster are orthologous to the embryo polarity determining mosquito gene cucoid. PLoS One. 2023; 18(1):e0274716. View in: PubMed

  2. How two extraembryonic epithelia became one: serosa and amnion features and functions of Drosophila's amnioserosa. Philos Trans R Soc Lond B Biol Sci. 2022 12 05; 377(1865):20210265. View in: PubMed

  3. Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom. Philos Trans R Soc Lond B Biol Sci. 2022 12 05; 377(1865):20210250. View in: PubMed

  4. Evolution and loss of ?-catenin and TCF-dependent axis specification in insects. Curr Opin Insect Sci. 2022 04; 50:100877. View in: PubMed

  5. Embryo polarity in moth flies and mosquitoes relies on distinct old genes with localized transcript isoforms. Elife. 2019 10 08; 8. View in: PubMed

  6. Ancient mechanisms for the evolution of the bicoid homeodomain's function in fly development. Elife. 2018 10 09; 7. View in: PubMed

  7. Chironomus riparius (Diptera) genome sequencing reveals the impact of minisatellite transposable elements on population divergence. Mol Ecol. 2017 Jun; 26(12):3256-3275. View in: PubMed

  8. Analysis of neural elements in head-mutant Drosophila embryos suggests segmental origin of the optic lobes. Rouxs Arch Dev Biol. 1995 Sep; 205(1-2):31-44. View in: PubMed

  9. Fate-mapping in the procephalic region of the embryonic Drosopbila head. Rouxs Arch Dev Biol. 1994 Aug; 203(7-8):367-373. View in: PubMed

  10. Expression of engrailed in embryos of a beetle and five dipteran species with special reference to the terminal regions. Rouxs Arch Dev Biol. 1994 May; 203(6):298-303. View in: PubMed

  11. Functional evolution of a morphogenetic gradient. Elife. 2016 12 22; 5. View in: PubMed

  12. Morphogenetic functions of extraembryonic membranes in insects. Curr Opin Insect Sci. 2016 02; 13:86-92. View in: PubMed

  13. Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev. 2016 08; 39:116-128. View in: PubMed

  14. Embryo development. A cysteine-clamp gene drives embryo polarity in the midge Chironomus. Science. 2015 May 29; 348(6238):1040-2. View in: PubMed

  15. Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita. Elife. 2015 Jan 05; 4. View in: PubMed

  16. BMP-dependent serosa and amnion specification in the scuttle fly Megaselia abdita. Development. 2012 Sep; 139(18):3373-82. View in: PubMed

  17. The generation of variation and the developmental basis for evolutionary novelty. J Exp Zool B Mol Dev Evol. 2012 Sep; 318(6):501-17. View in: PubMed

  18. BMP signaling components in embryonic transcriptomes of the hover fly Episyrphus balteatus (Syrphidae). BMC Genomics. 2011 May 31; 12:278. View in: PubMed

  19. Megaselia abdita: cuticle preparation from injected embryos. Cold Spring Harb Protoc. 2011 Apr 01; 2011(4):pdb.prot5603. View in: PubMed

  20. Megaselia abdita: fixing and devitellinizing embryos. Cold Spring Harb Protoc. 2011 Apr 01; 2011(4):pdb.prot5602. View in: PubMed

  21. Megaselia abdita: preparing embryos for injection. Cold Spring Harb Protoc. 2011 Apr 01; 2011(4):pdb.prot5601. View in: PubMed

  22. Megaselia abdita: culturing and egg collection. Cold Spring Harb Protoc. 2011 Apr 01; 2011(4):pdb.prot5600. View in: PubMed

  23. The scuttle fly Megaselia abdita (Phoridae): a link between Drosophila and Mosquito development. Cold Spring Harb Protoc. 2011 Apr 01; 2011(4):pdb.emo143. View in: PubMed

  24. Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A. 2011 Apr 05; 108(14):5690-5. View in: PubMed

  25. Hox3/zen and the evolution of extraembryonic epithelia in insects. Adv Exp Med Biol. 2010; 689:133-44. View in: PubMed

  26. Maternal activation of gap genes in the hover fly Episyrphus. Development. 2010 May; 137(10):1709-19. View in: PubMed

  27. Postgastrular zen expression is required to develop distinct amniotic and serosal epithelia in the scuttle fly Megaselia. Dev Biol. 2010 May 01; 341(1):282-90. View in: PubMed

  28. Extremely small genomes in two unrelated dipteran insects with shared early developmental traits. Dev Genes Evol. 2009 Apr; 219(4):207-10. View in: PubMed

  29. Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage. Development. 2009 Jan; 136(1):117-27. View in: PubMed

  30. Bicoid occurrence and Bicoid-dependent hunchback regulation in lower cyclorrhaphan flies. Evol Dev. 2008 Jul-Aug; 10(4):413-20. View in: PubMed

  31. Expression and regulation of caudal in the lower cyclorrhaphan fly Megaselia. Dev Genes Evol. 2008 Feb; 218(2):81-7. View in: PubMed

  32. Evolutionary origin of the amnioserosa in cyclorrhaphan flies correlates with spatial and temporal expression changes of zen. Proc Natl Acad Sci U S A. 2008 Jan 08; 105(1):234-9. View in: PubMed

  33. Insect serosa: a head line in comparative developmental genetics. Curr Biol. 2005 Apr 12; 15(7):R245-7. View in: PubMed

  34. Differential cytoplasmic mRNA localisation adjusts pair-rule transcription factor activity to cytoarchitecture in dipteran evolution. Development. 2004 Sep; 131(17):4251-61. View in: PubMed

  35. Evo-devo aspects of classical and molecular data in a historical perspective. J Exp Zool B Mol Dev Evol. 2004 Jan 15; 302(1):69-91. View in: PubMed

  36. A single Hox3 gene with composite bicoid and zerknullt expression characteristics in non-Cyclorrhaphan flies. Proc Natl Acad Sci U S A. 2002 Jan 08; 99(1):274-9. View in: PubMed

  37. A strategy for mapping bicoid on the phylogenetic tree. Curr Biol. 2001 Jan 23; 11(2):R43-4. View in: PubMed

  38. The amnioserosa is an apomorphic character of cyclorrhaphan flies. Dev Genes Evol. 2000 Jul; 210(7):373-6. View in: PubMed

  39. Different ways to make a head. Bioessays. 2001 Jan; 23(1):8-11. View in: PubMed

  40. Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae). Proc Natl Acad Sci U S A. 2000 Sep 26; 97(20):10844-9. View in: PubMed

  41. The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene. Proc Natl Acad Sci U S A. 1999 Mar 30; 96(7):3786-9. View in: PubMed

  42. RNA binding and translational suppression by bicoid. Nature. 1996 Feb 22; 379(6567):746-9. View in: PubMed

  43. Number, identity, and sequence of the Drosophila head segments as revealed by neural elements and their deletion patterns in mutants. Proc Natl Acad Sci U S A. 1994 Aug 30; 91(18):8363-7. View in: PubMed

  44. Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development. 1992 Sep; 116(1):111-25. View in: PubMed